
PERC interactions with TSI

The primary goals of PERC interactions with TSI are the following: (i) conduct extensive
performance analyses of various astrophysics codes on SciDAC hardware using vendor
and PERC performance tools, (ii) assist TSI in understanding key performance issues of
their codes contributing to significant performance improvement, and (iii) construct
performance models of mature TSI codes. During the first two years we have worked
with four TSI codes, EVH1, Agile-Boltztran (AGB), GENASIS, and ZEUS-MP. The
level of activity varied for each code as some codes were more mature than the others
(e.g., EVH1 and ZEUS-MP). Each code was ported and analyzed on at least two SciDAC
architectures.

Communication profile of Agile-Bolztran obtained using Vampire.
Shows that communication accounts for 10% of total time.

For EVH1 we identified key routines that affect performance and extracted associated
kernels to further study performance. Routines that affect single node performance as
well as parallel scalability were studied. Our studies suggested that manually in-lining a
very frequently called routine (parabola) and reducing the array depth for some arrays
could improve single node performance by about 10% on some architectures. Our
parallel scalability study and the associated communication kernel suggested that
switching to a two-dimensional decomposition could significantly reduce the
communication time for certain cases. The developers are considering these
improvements for a future release. A semi-empirical performance model that predicts
performance of EVH1 on various architectures was developed. Development and
applicability of this model has been presented in a recent conference proceedings paper
(Mahinthakumar et al. 2004). For AGB we identified a potential performance problem
due to redundant computations that led to up to a 55% improvement in parallel

performance (for larger number of processors). For GENASIS we identified a potential
HDF I/O performance bottleneck. For ZEUS-MP our suggestions on compiler
optimizations resulted in almost a factor of two performance improvement on the IBM
P690. Our work during the past two years have been summarized in two annual reports
available at: http://www4.ncsu.edu/~gmkumar/perc/year1_final.pdf and
http://www4.ncsu.edu/~gmkumar/perc/year2_final.pdf). As an illustration of our
interactions we show in the adjoining figures how we contributed to the improvement of
one of the codes (AGB).

33
9.4

6

33
1.3

6

14
1.4

2

12
5.3

7

67
.66

12
74

.3

60
1.0

1

14
0.0

2

12
4.6

6

69
.88

19
42

.98

57
9.8

9

el_gl nuceos fermi_01 fermi_2 intnespr Total
Subroutines

Fl
op

 c
ou

nt
 (1

e9
)

5 procs
10 procs

Flop count break down comparison for 5 and 10 processors show redundant computations in
two of the predominant routines el_gl and nuceos in the old version of AGB.

AGB Timing
4 x 4 problem

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 6
Number of processors

ex
ec

ut
io

n
tim

e
(s

ec
s)

Old version
New version

0

http://www4.ncsu.edu/~gmkumar/perc/year1_final.pdf
http://www4.ncsu.edu/~gmkumar/perc/year2_final.pdf

