

PERC Overview

Specific Objectives

&5 Understand key factors in applications that affect
performance.

& Understand key factors in computer systems that affect
performance.

& Develop models that accurately predict performance of
applications on systems.

&5 Develop an enabling infrastructure of tools for
performance monitoring, modeling and optimization.

2z Validate these ideas and infrastructure via close
collaboration with DOE Office of Science and others.

& Transfer the technology to end users.

PERC Anticipated Benefits

Consider the economic value of improving the performance
of a single high-end scientific application code by 20%.

Assume:

& $10 million computer system lease cost per year.
25 $10 million per year in site costs, support staff, etc.
& 10-year lifetime of code.

&5 Code uses 5% of system cycles each year.

Savings: $2,000,000.

Scientific benefit (additional computer runs and research) is
probably much higher.

PERC Anticipated Benefits, cont.

& \We rely heavily on commercial vendors for high-
performance computer systems.

& \We are invited by vendors to provide guidance on the
design of current and future systems.

BUT

&< At present we can provide only vague information — little if
any quantitative data or rigorous analysis.

The performance monitoring and modeling capability to be
developed in PERC will significantly improve our ability to
Influence future scientific computer systems.

(_ Current State-of-the-Art

e

& Some tools collect performance data, but
#< They are not targeted to large parallel systems.

#< They are not able to collect performance data at individual
levels of deep memory hierarchies.

& A few performance modeling technigues have been
developed, but

They are time-consuming to generate, difficult to use, or
have limited accuracy.

& Some automatic tuning techniques have been developed,
but

= They have been applied only in limited algorithm domains.

=z There is no hardened support for real-time optimization.

New Capabilities

z Better Benchmarks:

=z Polished, concise versions of real user codes, representing
strategic application areas.

=z Kernel benchmarks extracted from real codes reduce
complexity of analyzing full-size benchmarks.

= Low-level benchmarks measure key rates of data access at
various levels of memory hierarchy.

2 Modern performance monitoring tools:

=z Flexible instrumentation systems capture hardware and
software interactions, instruction execution frequencies,
memory reference behavior, and execution overheads.

An advanced data management infrastructure tracks
performance experiments and data across time and space.

C New Capabilities, cont.

e

& Performance modeling:

= Application signhature tools characterize applications
Independent of the machine where they execute.

Machine signature tools characterize computer systems,
Independent of the applications.

zs Convolution tools combine application and machine
sighatures to provide accurate performance models.

= Statistical models find approximate performance models
based on easily measured performance data.

Phase models analyze separate sections of an application,
providing overall performance predictions.

=z Performance bound tools determine ultimate potential of an
application on a given system.

C New Capabilities, cont.

e

& Performance optimization:

= Compile-time optimization mechanisms analyze source
code to improve performance.

z Self-tuning software automatically tunes code based on
real-time measurements of hardware environment.

=z Performance assertions permit user-specified run-time tests
to possibly change the course of the computation
depending on results.

= Performance portability programming techniques to insure
that code runs at near-optimal performance across a variety
of modern systems.

(/)
-
-
)]
s’
i
M
al
p]
(7))
()]
&)
&)
<
>
-
@)
-
()
=
©
D)
-
-
(7))
48]
()
=

4
©
N
—
N
@©
<
=
<
0P
al
<
=

10ssao0ud Jjo

aul|
Aeme MmoJy) ‘wopuel

8 apuIs

aul|
ayord asn ‘wopuel

aul|
ayoed asn g apu1s

oul|
ayoed asn T apu1s

21 puub

271/T1 12211942

T puub

171 puub

PERC SvPablo Graphical Interface

1]

— svPablo

~| Legend: Source Code Metrics

Project Instrument View GenCallGraph Help

Project Description: | PCTM on IBM-5P (seaharg)

Source Files: Performance Contexts:
IBM-SP, 64 procs, other Metrics
fed_setup F IB 64 1 other Metrics, 10 ¢

IBM-5P, 32 procs, other Metrics, 10 days
IBM-SP, 16 procs, other Metrics, 10 days
IBM-5P, B pracs, other Metrics, 10 days
IBM-3P, 4 pracs, other Metrics, 10 days

Routines in Source File Routines in Performance Data

fod I

fod_setup oceanstep

fed_timer_clear icester ;
fed_timer_start mpi_c| —| Specific Metric ||
fed_init mpi_c

HW Statistics by Line

. Flzating Point Instructions:
Source File: | /ulfcmendes/PCTMMmom 2isrcisourcesfod. F

r

| —| Specific Metric

call fed timer_stop(20) 122?512204?.0000 ——com3
call fed timer start (17) —

Specific Metric I ||

n=nstepsl o }
Call Statistics my_cem3 HW Stalistics by Line
count: ibufa(l)=rest_nday = .

ibufa(2)=hist_nday
ibufa(3)=snap_nday
call eday2date (nstep, ibufar -

|| | Dismiss Help i Gl dlee Fn’Jbufa’ fedaput) HW Statistics by Line
a meit_perilomaa(d) [e Branch Instructions:
if (11.eq.nldays reset.and.lZT

- 240 0000 — aem3 390348320.0000 ——com3

Specific Metric | ||

|| —| Specific Metric

6944481284.0000 — ccm3

AomiEa () =2 I Specific Metric
Call Statistics if (11.eq.nldays_reset.and.l12.

Duration: 1 HW Statistics by Line

if [(dead atm) then TLB misses:
I 2280 = e call dead cem3 (ibufa, fodaput)
- nfacsd 151118598.0000 — com3

Disrmiss Help if (ll.eq.nldays_reset.and.12.

B | cdate = year-10000+month-100+ Help
[' Al

call fod timer start(9)

call oo ut)
> call fod timer stop(9)
o cdate = ibufa(4)
endif
fendif
cth

Instrument/Clear Line

@ View Line Data

Column 1: Call Statistics count
240
10

Column 2: Call Statistics Duration
211.24
118.525

Calumn 3: Loop Statistics count
0
0

Column 4: Loop Statistics Duration
]

]

Caolumn & HW Statistics by Line Floating Point Instr
H 1.85722e+10

0

Column &: HW Statistics by Line Load Misses in 01
H8.621968+08

2.46132e+08

Column 7: HW Statistics by Line Branch Instructions
H6.944488+09

0

Calumn 8: HW Statistics by Line Load Instructions

3.10653e+10
0

Column 9: HW Statistics by Line Instruction Cache k
H9.5565:1e+0?

6.60955e+07

Caolumn 10: HW Statistics by Line TLB misses
u 1.51118e+08

FRGTAT o et)

Dismiss Help

PERC PAPI Perfometer Interface

F— =
Egg Perfometer _ O]
Connection Options Help
g g Connect Local @ Connect to Net @\;—ﬁ, Disconnect | Select Metric| Show Legend &" Exit
hench_gen |
Process: bench_gen f) L
w » i
Machine: torc2, a 2 CPU Intel Pentium 11 at §50.0 Mbz. v i ICI' o
=
L ! ~
Real time 40.79 s. Total FP Ins: 1002176336 Mflopis: 20.59 7 f,-"“
Process time: 40.49 s. MinMax: 10.34132.54 Agg Milop's 24.91 T
Resume App | | Stop Datastream Set Alat Disable Avg Plat | Graph Type: | FILLEDLINE - | PA P I
bench fen a6
= SN e TIe T T et A] N
G?iz o o o o o o FE GOODDOTGGG For o P o o o o o 5 For o P o o o o o o B L% L »iQ o7 fur o fited
— 1 B — - — i 4 F =
= e & - Py - R - ot %
10

Performance Study of SciDAC
Application

N

)
=

—e— |BM p690 (1.3GHz)

—=— |[BM SP (Winterhawk Il / 375MHz)

—a— Compag Alphaserver SC (ES40 / 667MHz)
—x— Compag Alphaserver SC (ES45 / 1.0GHz)
—X—IBM SP (Nighthawk Il / 375MHz)

PERC Performance Measurements
e for AORSA3D — a fusion code

= AORSA-3D solves for the wave electric field and R
heating in a 3D stellerator plasma heated by radio |

frequency waves, using an all orders spectral j[* W
algorithm. It represents an important kernel in the '\&H (
"Numerical Computation of Wave-Plasma Interactions | k ¥ |

In Multi-Dimensional Systems" SciDAC project.

=z A Fortran code that uses ScaLAPACK to solve a
dense set of linear equations. ScaLAPACK routines
handle the MPI communication and account for most of the execution time.

Performance data on next viewgraph:
& Performance data for AORSA-3D on an IBM SP (Nighthawk [1/375MHz).
& Hardware event counts for a 16 processor run collected with PAPI.
&5 Trace information collected for a 4 processor run with Vampirtrace.
z Data for the ScaLAPACK LU factorization routine PZGETRF.

= PZGETRF Is composed of an initialization step, and a loop that
calls 4 ScaLAPACK subroutines.

et

Performance Measurements

for AORSA3D — a fusion code

2
1.5 A
i o
O Density of Memory Access
0.5 1 Density of Floating Point Ops
ol L T BN W]

pzgetrf2 pzlaswp pztrsm pzgemm

PZGETRF subroutines

Performance measurements and trace data for
ScalLAPACK LU factorization routine PZGETRF.

pzgetrf2 pzlaswp

O

O Fraction FMA
Fraction FDIV
O Fraction FSQRT]
O Fraction Other

pztrsm pzgemm

OO

Floating Point Composition of PZGETRF subroutines

o

Time= in sukroutines
near the beginning of
PESETRF's =xecution

{ h
\ .
H‘k M HPI
1 pZgemm
H“ﬂkh o pzgetrfd
s (M pzlazup

Process 1

Application

P

load_matrix

pzgetizs

proetrfs

-1

azup

PZOEmn

A] Ii".l b‘.l

wh-

b

b b b

"

]bl

; iTrace of PE3ETRFEF's =x=cutiocn

Time= in sukbroutines
n=ar the =nd of
PEZSETRF's exacution

Application
M HPI
PZOEmm
proetrfs
M pzlazup

Process 1

PERC SciDAC Interactions

Codes have been acquired from these projects:
& Terascale Simulation of Neutrino-Driven Supernovae
25 Advanced Computing for 21st Century Accelerators

zs National Computational Infrastructure for Lattice Gauge
Theory

&5 Collaborate Design and Development of Community
Climate System Model for Terascale Computers

2 Numerical Computation of Wave-Plasma Interactions

&5 Accurate Properties for Open-Shell States of Large
Molecules

& Terascale Optimal PDE Solvers
&< An Algorithmic and Software Framework for PDEs

C Working with PERC

e

& Benchmarking

= Application group works with PERC to specify relevant
benchmark codes and problems.

= PERC characterizes performance, generates performance
models, and suggests optimizations.

z Performance Tools
z PERC trains application developers to use tools.

=< Application group uses tools in development, providing
feedback on functionality and future development

For further information: http://perc.nersc.gov

Summary

Dynlnst

