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Abstract

This proposal outlines a plan to establish an Enabling Technology Center (ETC) in the area of high-end computer performance.  In particular, the proposed Center will develop a science for understanding performance of scientific applications on high-end computer systems, and will also develop engineering strategies for improving performance on these systems.  The proposed project will integrate several active efforts in the high performance computing (HPC) community and will forge alliances with application scientists working on DOE Office of Science (SC) missions to ensure that the resulting techniques and tools are truly useful to end users.

The proposers believe that for the foreseeable future, time to solution will be dominated by a code’s ability to utilize the memory hierarchy of a high performance computing (HPC) system effectively, including local and distributed memory.  Understanding and exploiting this hierarchy is one of the central challenges of high performance computing.  This challenge is compounded by a diverse collection of HPC architectures, each with a different memory hierarchy design, and a broad collection of scientific applications and constituent algorithms.

The project will focus on how one can best execute a specific application on a given platform.  We expect our research results will enable us to generate realistic bounds on achievable performance and answer three fundamental questions: why these limits exist; how we can accelerate applications toward these limits, and how this information should influence the design of future applications and HPC systems.  In particular, we will seek to

1. Understand the key factors in applications that affect performance.

2. Understand the key factors in computer systems that affect performance. 

3. Develop models that accurately predict performance of applications on systems.

4. Develop an enabling infrastructure of tools for performance monitoring, modeling and optimization.

5. Validate these ideas and infrastructure via close collaboration with DOE SC and other application owners.

6. Transfer the technology to end-users.

We have assembled an outstanding team of researchers to achieve these goals
.
I.  Introduction
This proposal will establish an Enabling Technology Center in performance analysis and optimization of high-end computer systems and applications.  In particular, the proposed Center will develop a science for understanding the performance of scientific applications on high-end computer systems, and will also develop engineering strategies for improving performance on these systems.  The proposed project will integrate several efforts already active in the high performance computing (HPC) community, and will forge alliances with application scientists working on DOE Office of Science (SC
) missions to ensure that the resulting techniques and tools are truly useful to end users.

The proposers believe that for the foreseeable future, time to solution will be dominated by a code’s ability to effectively utilize the memory hierarchy of a high performance computer (HPC) system, including local and distributed memory.  Understanding and exploiting this hierarchy is one of the central challenges of high performance computing.  This challenge is compounded by a diverse collection of HPC architectures, each with a different memory hierarchy design, and a broad collection of scientific applications and constituent algorithms.

At present, our limited understanding of the expected performance of a particular algorithm or application when mapped onto specific platform prevents us from answering the key question of the application programmer: do I need to further optimize my code for this machine?  For example, suppose that a code takes 15 hours (or even 15 days) to generate a solution on a given machine and that it achieves 5% of the theoretical peak execution rate of the machine.  Currently, we cannot determine if further optimization could reduce the time to solution to 7.5 hour or if performance limits for this application/machine combination fail to justify significant optimization effort. For most scientific applications, detailed, quantitative performance analyses of this sort are completely lacking.
Scope.  This activity will focus on high performance computing systems (i.e., large distributed memory parallel systems; large shared memory systems; and large cluster systems).  We will also focus on representative scientific applications and problems of interest to the SC, initially those areas emphasized in the SciDAC call for proposals.  Our research goal is to characterize the realistic performance bounds of HPC applications and systems, understand why these limits exist, determine what can be done to more closely approach these limits, and predict what can be expected on future applications and systems.  To that end, we will develop benchmarks, models, analytical techniques, and tools.

To keep the scope of work focused and manageable, several topics have been explicitly excluded from this proposal. With respect to computing platforms, we will not address systems that are primarily intended for use in non-scientific data processing.  Further, we will not focus on personal computers or individual workstations.  However, we expect some of the tools and techniques we develop will also benefit technical users of single processor systems.  Also, we will not consider computational grids.  We acknowledge that there are many interesting performance issues for computational grids, but they are outside the scope of this study.

Similarly, we will focus on DOE SC applications, and not, for example, commercial science and engineering codes, such as those used by the auto and semiconductor industries.  However, as stated previously, we expect that these applications could potentially benefit from our research.

Finally, we will not address fundamental mathematical algorithm improvements for these applications, even though performance gains are also possible via algorithm research.  Given the diversity of HPC application software designs, we will also take a neutral position on programming models and methodologies – our results should apply to all models, and we will not attempt extensive comparisons of models to “pick a winner.”

Approach.  A science of performance predicts what levels of performance an application can achieve on a particular platform. Performance engineering develops practical strategies to maximize achieved performance.  Both objectives require understanding how application codes exploit, or fail to exploit, the available resources on a particular platform.  The PIs represented in this proposal bring diverse and complementary expertise, experience, tools, and research plans.  However, they share a common vision on how to achieve this understanding of performance.

The fundamental premise of this proposal is that overall application performance (namely wall-clock execution time) is dominated by how well the application exploits the entire memory hierarchy of a machine.  Hence, a science of performance must develop abstractions of performance phenomena or models that capture memory system performance accurately. Further, performance engineering requires that we use our models to guide the development of new performance optimizers that enhance the exploitation of the memory hierarchy of end-user codes.

These models and optimizers will require some performance data as input and, just as importantly, we will require significant volumes of performance data to validate our models.  Thus, we must also make significant advances in performance monitoring and collection tools.  Further, we must gather the data for relevant applications. To this end, we will adopt existing benchmarks when possible, but generate new benchmarks when required.  Thus, we focus on four areas: benchmarking; performance tools; modeling and analysis; and performance optimizers.

We require understandable, clear benchmarks that make extensive use of the memory hierarchy as a baseline for our model and tool development.  Furthermore, several key DOE SC disciplines are not well represented by existing benchmarks.  The Oak Ridge National Laboratory (ORNL) and the Lawrence Berkeley National Laboratory (LBNL) will produce several discipline-specific benchmarks, with an early emphasis on SciDAC applications such as climate, chemistry and high-energy nuclear physics.  These benchmarks will include full applications, kernels, and low-level benchmarks, with established linkages among levels.  There will also be an effort to modify benchmarks to determine performance sensitivity to tuning, and to explore opportunities for building performance portability into application codes.

For performance monitoring tools, we intend to develop a software infrastructure for monitoring and collecting performance data.  In most cases, prototypes of these tools already exist.  Some of these include the SvPablo toolkit, under development at the University of Illinois Urbana-Champaign (UIUC), the Sigma tool for cache measurement from the University of Maryland (UMD), and the PAPI infrastructure from the University of Tennessee Knoxville (UTK).  Our work will focus on adding necessary features to these tools, porting them to all platforms of interest (so that our modeling and analysis work will be based on fully comparable data), and enhancing the reliability and usability of these tools for application scientists.  We will also develop an infrastructure for collecting and analyzing the data that these tools produce.

Performance modeling and analysis represent the scientific heart of this project.  We intend to develop a hierarchy of models that reasonably and accurately describe and predict performance.  These efforts will build on activities at UMD, UIUC, the Lawrence Livermore National Laboratory (LLNL), the Argonne National Laboratory (ANL), ORNL, the San Diego Supercomputing Center (SDSC), and LBNL.  Our research plan is to develop each of these approaches and evaluate their predictive capability against a common set of test cases, disclosing which modeling and analysis techniques are the most effective and easily performed.  All of the above-mentioned institutions will participate in the testing and analysis of results.  LBNL will provide a common repository for data, analyses, and tools.

Finally, for performance optimizers, we intend to develop software tools that will either optimize codes automatically or assist users in optimizing codes.  Some of these tools will require data provided by the performance monitoring tools and modeling techniques mentioned above.  Others, such as the AEOS tool being developed at UTK, will perform the necessary measurements themselves.  As before, each of these activities will build on some existing research projects.  ORNL, UMD, LLNL, ANL, UTK and LBNL will participate in this activity.

The remainder of this document will present the details of our activities in these four areas.

II. Benchmarks

The performance modeling and optimization research described in this project are all driven by performance data. The tools described in the next section enable the collection of the data. The benchmarks described here define what is being measured, and the determination of appropriate benchmarks is vital to the success of the research.

Traditionally, benchmarks provide three fundamental benefits to the high performance computing community:  (1) they play an indispensable role in high-end system procurement; (2) they are used by application scientists to estimate what performance levels can be expected from their production codes on a given computer system; and (3) they are used by computer scientists to evaluate quantitatively various alternatives in computer hardware, software, and algorithms.

Unfortunately, most existing benchmarks are not appropriate for the proposed project.  In some cases (such as the NAS Parallel Benchmarks), they were not designed for the large high-end systems currently available.  In other cases, they encapsulate an algorithm or application class that is no longer deemed representative of today’s workload.  More fundamentally, a science of performance must be built on a solid base of reliable, comparable data that stress the memory hierarchy at each level (especially given our data-centric approach) on all relevant platforms.  We require understandable, clear benchmarks that make extensive use of the memory hierarchy as a baseline for our model and tool development.  Well-designed, easily configurable and targetable benchmarks of this sort are not currently available for high-performance computing systems.  To address this, our proposal includes a benchmarking effort.

The benchmarking activity also explicitly targets application codes drawn from those areas that the SciDAC call for proposals emphasizes.  We will work with user communities or specific research groups, selecting application codes that represent the most important computational tasks and span the variety of codes employed by computational scientists.  These codes will be the basis or motivation for the discipline-specific, kernel and low-level benchmarks described below. 

Finally, the benchmarks provide a mechanism both for tying together the different aspects of the project and for communicating results back to the user communities.  Using a common pool of codes in the project allows direct comparison between the alternative approaches.  The analysis and optimization of codes identified as relevant to a given community will be used to demonstrate the utility to that community of the tools and research being produced.

Discipline-Specific Benchmarks. We do not just intend to provide coverage of the types of codes of importance to DOE SC missions with our benchmarks. We also are interested in understanding the discipline-specific nature of the applications.  Hence, we will target user communities or large computational projects, not individual codes.  For each community, we will identify the applications or tasks that represent the primary computational activities of that community, and use these to identify or create benchmarks, including the specification of the input datasets.

These benchmarks will be used for overall performance characterizations and analysis and to guide the development and to evaluate the effectiveness of our performance optimization tools. We will also collect performance data for the benchmarks. Performance data will be of two types: public data of interest to the application (and wider HPC) communities and project data collected solely for the project research.  We will develop and maintain a data repository at LBNL for the project that will use the Repository-in-a-Box technology described in Section III.

Kernel Benchmarks.  Kernel benchmarks consist of smaller test programs that encapsulate a single compact algorithm, or even a single loop.  Kernels provide a vehicle for reducing the complexity of the analysis and modeling (relative to working directly with the full application codes), but still attacking key problems.  They also enable a stepwise approach to addressing full application codes.  We will extract or identify relevant kernels via an analysis of the discipline-specific benchmark codes.  We will also establish how the performance of the kernels is linked to that of the application codes from which they are drawn, and how the kernel performance is linked to that of the low-level benchmarks described below.

Note that these activities are closely tied to the modeling and analysis activities described later, where existing techniques will be used in the initial identification and new techniques developed to refine our understanding of the performance relationships.  The kernel activities will also utilize the performance tools to collect the required data.

[image: image1.png]Low-Level Benchmarks.  Low-level system benchmarks, or “benchmark-probes” measure low-level characteristics of existing machines.  One example of a low-level benchmark is a “probe” to measure the rates machines can sustain fundamental operations across various regimes of data access.  This includes rates of loads and stores for small cache-bound problems, rates for problems that fall between L1 and L2, rates for sequential main-memory access, rates for strides to main memory that throw away cache lines, rates for random local main memory accesses, and rates for off-node memory accesses. For example, Figure 1 shows the results from an Alpha-cluster system of SDSC’s MAPS (Machine Access Pattern Signature) benchmark-probe. This example of a machine signature acquired by a probe, represents, in concise graphical form, a great deal of information about the performance of the memory hierarchy.

Our benchmarking activity will extend existing low-level benchmarks to large parallel systems.  New low-level benchmarks will gather additional signature data (e.g., issue rates of functional units, bandwidths and latencies of communication operations depending on topology and number of nodes, costs of TLB misses, OS context switches, and sustainable I/O rates).  We will run these benchmarks on a variety of platforms during the duration of the project; the results will be available in the repository maintained by LBNL.

In addition, the systems software on each of the target architectures will be characterized.  Particular attention will be paid to assessment of available optimizing compilers, runtime libraries, and cache coherence protocols.

III.  Performance Tools

To validate our performance models, the heart of our science of performance, we need data that we cannot obtain with current performance tools. Thus, we will modify existing tools and develop new ones to collect this data. This activity will also result in software tools of greater value to the user community – our tools will simplify the collection and analysis of performance data, as well as aiding users in code optimization.  Although each tool has a particular focus, they are intended to interoperate.  Hence, some tools capture data needed by others, and some tools have (or will be enhanced to provide) interfaces to process data produced by other tools.

Our goal is to produce an interoperable suite of measurement, analysis, and tuning tools.  This goal requires three tightly coupled research efforts:

· End-user tools that integrate various analysis and measurement approaches, providing a common interface for comparing performance measurements across platforms and executions and correlating this data with benchmark and application source code.

· Flexible instrumentation systems for capturing hardware and software interactions, instruction execution frequencies, memory reference behavior, and execution overheads.

· Data management infrastructure for tracking performance experiments and data across time and space.

Each of these activities is described in greater detail below.

End-user Tools.

SvPablo: An Integration Toolkit.  SvPablo (source view Pablo) is a graphical environment for instrumenting application source code and browsing dynamic performance data [DeR98, DeY99].  SvPablo supports performance data capture, analysis, and presentation for applications written in a variety of languages and executed on both sequential and parallel systems.  Also, SvPablo exploits hardware support for performance counters via the PAPI toolkit (see below).

We propose to extend, extensively document, deploy and support the SvPablo toolkit as this project’s basis for integrated performance characterization and prediction.  This effort will produce a flexible toolkit for performance characterization and prediction on all common HPC platforms, as well as a common infrastructure for research in performance measurement, prediction, and characterization.

The key to SvPablo’s flexibility is its self-describing data format (SDDF), the specification used by SvPablo’s browser to display application source code and correlated performance metrics.  The SDDF meta-format provides the generality and extensibility necessary to represent a diverse set of performance metrics and measurement points.  This meta-configuration allows tool developers to add new metrics to SvPablo simply by updating the mapping and configuration records and then generating the desired set of statistic records.  Equally importantly, it is the mechanism for integrating new instrumentation systems.
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At present, SvPablo combines instrumenting parsers for C, Fortran 77, and Fortran 90 with support for the UTK PAPI hardware counter toolkit.  SvPablo has been used to instrument and measure the performance of large research codes on parallel systems and Linux PC clusters.  See Figure 2 for an example.  For this work, we will port SvPablo to new hardware platforms (e.g., Compaq Alpha and Intel IA-64).  We will also integrate the ROSE software infrastructure for instrumentation of C++ codes and enhance support for Fortran 90; this will provide a robust source code infrastructure for all major scientific programming languages: C, C++, Fortran 77, and Fortran 90. We require these activities so that we are able to gather the needed data for all benchmarks on all platforms.

Finally, we will integrate the performance modeling software described elsewhere in this proposal with SvPablo.  These integrated models will enable users to predict the performance of code constructs on target machines and to compare model predictions to measured executions when data is available.  Our work leverages infrastructure and research efforts already underway at UIUC, notably (a) the SvPablo source code instrumentation and analysis toolkit, (b) the Pablo I/O characterization system, and (c) the Autopilot adaptive performance tuning infrastructure.  Also, it builds on the UTK PAPI and AEOS efforts, the ROSE software infrastructure, the Sigma++ toolkit and dyninst software, and our modeling efforts by integrating their capabilities.

The result of this effort will be a toolkit that supports application and benchmark data capture and analysis via the other measurement infrastructures described below.  The resulting data will include both hardware measurements from instruction counters (e.g., instruction mixes and cache activity) and software measurements of statement execution counts and time spent in code regions.  This data will enable us to analyze and compare benchmark and application performance across platforms in a uniform way, something not possible with a set of machine-specific tools that do not interoperate.  Most importantly, the enhanced SvPablo toolkit will integrate several of the modeling tools, enabling performance analysts and users to estimate code performance on new platforms or at different scales [ReM98].


Sigma++:  Memory Hierarchy Measurement Infrastructure.  Sigma++ extends the prototype Sigma toolkit to support our science of performance and to enable performance engineering. Sigma gathers data that is critical to an understanding of the interaction between application programs and the memory hierarchy: the application’s memory usage profile.  The initial approach uses runtime instrumentation to extract a detailed representation of the memory reference pattern of the application; we expect to augment this approach with compile-time instrumentation to capture memory traces that include data dependence information.  This reference pattern information will be the input to a collection of post-execution tools that provide insight into memory performance issues such as cache conflicts and memory bandwidth contention. For example, we will develop tools that identify if a cache miss is due to the cache size or interference with other data structures. We will use the data dependence information to bound the benefits of both hardware and software optimization techniques such as tiling or dynamic access optimizations.

Currently, Sigma is able to gather compact address traces for regular loops.  The key idea is that the instrumentation system recognizes regular striding behavior and produces a trace that compactly represents these types of references.  In this project, we propose to extend Sigma’s instrumentation system to handle irregular references and loops with conditional statements.  Since these types of loops lack regular strides, we plan to use a statistical summary of the reference pattern.  This process can be viewed as a form of lossy compression, whereas the technique for regular loops is loss-less.  One of the key questions will be if our statistical summary of the address patterns will provide sufficient accuracy to allow prediction of cache behavior. However, statistical models have proved effective in many situations.

The second component of Sigma++ is a set of tools that predict memory performance based on the compact trace data.  For detailed studies, we will adapt an existing detailed cache simulator that simulates every memory reference.  This type of simulation provides precise data, but the runtime can be thousands of times slower than real hardware. For higher performance, we will develop tools that exploit the striding information contained in the traces to predict the cache miss behavior of programs symbolically.  To do this, we will adapt either the Cache Miss Equations or the Presburger arithmetic formulation originally developed for compiler analysis of cache behavior [GMM99, CPH01].  By evaluating cache behavior with symbolic equations rather than a simulator, it is possible to identify specific references that are causing misses as well as to determine if misses are due to cache capacity or conflicts with other items.

Traditionally, cache simulation has concentrated on a single process; however, future systems are increasingly including shared resources in the memory hierarchy between the processor and main memory.  For example, in the IBM Power4, two processors share a single level-2 cache.  Also, in non-uniform memory access (NUMA) machines, there are often shared data structures in the coherency infrastructure. As a result, a goal of our approach will be to allow Sigma++ to process traces gathered from different processors and evaluate their interference with shared resources. 

To provide a unified environment, we will extend the SvPablo system to include Sigma++ functionality.  In particular, SvPablo will be extended to allow users to select specific functions or loop nests to be instrumented by Sigma++.  Because Sigma++ gathers data for each memory reference, focusing on a particular loop can result in a significantly faster tool execution.  We will also use the SvPablo infrastructure to report the information gathered by the Sigma++ backend.

Sigma++ is essential for the study of our benchmarks. It will allow us to model their memory reference patterns and, thus, to predict their performance across a variety of platforms. Further, the data dependence information will guide our optimization efforts.

Performance Bounds. We will also develop tools that use source code analysis to extract application signatures sufficiently detailed to establish performance bounds for applications and fragments of applications.  Building on our existing infrastructure for C, C++, and Fortran 77 source code analysis and annotation, we will automate the application of the performance bounding techniques described in Section IV.

The bounding tools will determine what sections of code have performance that is memory bandwidth limited or instruction scheduling limited on a particular architecture. For example, our tools will estimate the memory bandwidth requirements of the code by computing the ratio between the number of floating-point operations and memory accesses. We can then use this data to predict the maximum achievable performance for a given architecture and, thus, us to determine whether a code segment is memory bandwidth limited.

In addition to providing memory and instruction issue performance bounds estimates, the tools will perform code analysis enabling the overall characterization of the peak performance of a given algorithm. The tools will also utilize optional user annotations in order to provide more accurate bounds for performance-critical sections of code. The bound information generated by our tools will ultimately be used in conjunction with a performance measurement tool, such as SvPablo, allowing application programmers to identify existing performance bottlenecks and their associated performance bounds. 

Further, we will identify or develop an infrastructure for analysis and transformation of Fortran 95 to support this and other source code oriented techniques, such as ROSE and SvPablo.
Flexible Instrumentation Systems.

PAPI: Portable Hardware Measurement.  Today, hardware counters exist on every major processor platform.  These counters can provide application developers with accurate data about the performance of critical parts of the application and point to ways for improving the performance.  Performance tool developers can use these hardware counters to develop tools and interfaces that users can insert into their applications.  The current problem facing tool developers is that access to these counters is poorly documented, unstable or unavailable to the user-level program.  We need to make it easy for users to gain access to the counters to aid in performance analysis, modeling, and tuning; we will do this through the Performance Application Programmer’s Interface (PAPI).  PAPI will provide an easy-to-use, common set of interfaces to these performance counters on all major processor platforms, thereby providing application developers the data they need to tune their software on different platforms.  We need the same type of data to demonstrate that our science of performance is accurate.

Through interaction with the HPC community, including vendors and users, the PAPI developers have chosen a common set of hardware events deemed relevant and useful in tuning application performance.  These events may differ in their semantics on different platforms, and some may not be present on some platforms.  However, we expect most of these events will be available in the future on all major HPC platforms to improve the capability for tuning applications across platforms.  The predefined events include memory hierarchy accesses, cache coherence protocol events, cycle and instruction counts, and functional unit and pipeline status.  The PAPI implementation maps as many of these events as possible to native events on a given platform.
This project will result in a cross-platform parallel performance analysis tool infrastructure based on PAPI that supports other tools described in this proposal.  In particular, extensions to PAPI will support collection and analysis of hardware performance counter data in the context of shared and distributed memory parallel programs, as well as obtaining accurate timings in parallel environments.  Extensions will allow straightforward instrumentation of multi-threaded and multi-process applications and will include dynamic instrumentation capabilities.

Dyninst: Dynamic Object Code Instrumentation.  The dyninst API provides a machine independent interface to permit the creation of tools and applications that use runtime code patching. Traditionally, post compiler instrumentation tools have provided interfaces that allow machine or assembly language level code to be inserted.  Instead, the dyninst interface is more analogous to a machine independent intermediate representation of the instrumentation as an abstract syntax tree. This allows the same instrumentation code to be used on different platforms. For example, consider instrumentation code to monitor the behavior of a numeric library such as the BLAS (i.e. tracking high-level matrix operations). The instrumentation code would be specific to the particular library, but because the instrumentation is machine independent, it would work with any machine architecture where the library was installed. A key feature of this interface is that it allows insertion and alteration to instrumentation in a running program. 

For parallel environments, the serial dyninst API must be extended with a framework for attaching to and instrumenting multi-process programs. The PAPI project has developed a minimal framework for using dyninst with parallel programs, the Free Probe Class Server (FPCS). We plan to use IBM’s Dynamic Probe Class Library (DPCL) for this project if it is available; otherwise we plan further development on FPCS.  Both DPCL and FPCS allow a client to send a single request to a server to insert instrumentation code into all running processes of a parallel code.

Data and Experiment Management.

Collection of Parallel Performance Data.  To handle the collection of performance counter data from multiple processors in a parallel or distributed application, we plan to implement a client-server architecture. The server will collect data from all backend processes and communicate with the client.  To avoid overrunning the client with large amounts of data from parallel programs with large numbers of threads and/or processes, we will implement buffering and filtering on the server.  Our extended dyninst API for parallel and distributed environments will allow attaching to and dynamically instrumenting parallel applications with calls to the PAPI library.

Repository-in-a-Box.  The Repository-in-a-Box effort provides a toolkit for building and maintaining meta-data repositories.  It has two primary goals: promotion of software and meta-data reuse and interoperability.  RIB promotes software and meta-data reuse by providing tools to build meta-data repositories.  These repositories contain information pertaining to software packages and routines, an abstract, licensing information, point of contact, etc.  These repositories are intended to be discipline-oriented and to act as a central access point for software information.  The interoperability features of RIB allow repositories to share information in a scalable and efficient manner.  Additionally, these features allow domain specific repositories to be gathered into larger repositories with a common access point.  Repositories created with RIB can interoperate automatically with other repositories created with RIB.

To facilitate the development and distribution of performance evaluation enabling technologies and collected performance data on HPC, we propose to establish a repository of tools and data on performance evaluation. This repository will focus primarily on facilitating the collection and retrieval of all kinds of performance data without imposing special formats or data structures. The repository will permit the collection of timings, profiles, and program traces generated by the various tools in use in the community together with more complex analysis based on these data.  To facilitate the collection and retrieval of information with such different structures, a meta-data oriented repository infrastructure is necessary.  Special attention will be given to the collection of all kind of performance data generated within this SciDAC center as well as from other SciDAC activities.

We will implement this system over a multiyear period, emphasizing rapid deployment of the simplest mechanisms to produce a useful system early in the cycle.  The primary data repository will be at LBNL, although other institutions in the collaboration may have mirror copies.

IV.  Modeling and Analysis
A science of performance, that is understanding, modeling and predicting the performance of large-scale applications on HPC systems, is one of the great, unsolved challenges for computer science.  Creating a science of performance is our goal; if successful, our efforts will benefit the HPC community substantially. Computing center officials will be able to estimate accurately the overall workload performance they can expect from a prospective new computer system. Application developers will be able to focus on the root cause of performance problems when optimizing their codes. Computer scientists will be able to inexpensively explore wide ranges of system and algorithm options in their analyses.

Why is performance modeling so difficult?  The performance of a particular application on a given machine is a complex function of many variables, and the performance behavioral space is highly non-convex, with many local maxima and minima. To achieve our goal of a science of performance, we require scalable modeling methodologies that can be used to characterize performance for a diverse set of applications and parallel architectures.

An additional complication is that the performance questions being addressed are also a factor in determining the performance model. Tradeoffs between accuracy and range of validity and between cost and detail arise for performance modeling.  Predictions correct to the last cycle can be as computationally expensive to obtain as the calculation being modeled, thus infeasible in the time available. It may be possible to get a “good-enough” answer in less time.  This issue arises in both the generation and application of the performance models.  Hence, we will examine a variety of modeling techniques, identifying where each is best applied and the linkages between the different approaches.

To render the problem more tractable we focus on techniques that break up the modeling task into manageable parts. In this section we propose a set of activities that will separate concerns, and explore the cost-accuracy tradeoffs of several modeling methods.  We will first consider straightforward analytic modeling (which has proven accurate enough under some circumstances) and then proceed to an examination of several methods of varying complexity that first separate, and then convolve, metrics of machine and application.  The outcome of these investigations will be a validation as to which methods work best and an evaluation of several methods as to their relative accuracy and time-expense.

Linkage to Proposed Research.  Advances in the science of performance modeling lie at the heart of, and motivate this proposal; thus, this section is key.  It draws upon previous sections for input and should deliver improvements for tools proposed in sections III and V. 

The benchmarks of Section II give us a defined target.  We will focus on modeling and understanding the performance of the discipline-specific benchmarks described in that section.  Focusing on modeling and understanding kernel benchmarks will enable a stepwise approach to modeling full applications.  Furthermore, many of the methods outlined below (but not all) require precise characterization of machines via low-level benchmarks probes that measure sustainable rates of fundamental operations.

Performance tools such as SvPablo enable us to measure and gather data on applications and machines, providing additional inputs for performance modeling.  Sigma++ will further our capability to gather data on the interaction between applications and the memory hierarchy.  PAPI improves our ability to develop underlying instrumentation for probes and applications; Dyninst allows us to insert probes. SvPablo will also provide intuitive user interfaces to our models.

We expect the methods developed here to motivate or lead to improvements in the optimizing tools of Section V.  For example, our models will yield new understanding and improve methods for runtime (New Harmony) and compile time (ROSE) performance adaptations.

Analytic Phase Models. For our purposes, a phase model is a performance model based on straightforward counts of operations derived from the source code.  Each term of the model is weighted by an effective rate determined from empirical studies of the target code.  These effective rates vary depending on the code being modeled; a model for a typical code will be the sum of analytic models, each representing a phase of the computation with its own effective rates.  The determination of the phases is an iterative process, decomposing each phase into smaller sub-phases and determining whether the same effective rates are accurate enough to represent the performance of all sub-phases. 

Phase modeling has proven accurate enough for both scaling studies and comparison of alternative parallel implementations [BWM98].  The primary limitation of the approach is that the model does not explain why the effective rates change, nor how performance might be improved.  It is also difficult (although not impossible) to a priori determine the regime of model validity when scaling the problem size or numbers of processors. The models are, however, inexpensive to use and provide the type of information needed by optimization systems such as New Harmony to decide between alternative implementations of a kernel.

Application Signatures. One approach to decoupling applications and systems is to develop an abstract application signature, which characterizes the fundamental aspects of an application independent of the machine where it executes.  We expect to include many different application features in these signatures, including the ratio of memory references to arithmetic/logical operations, memory reference patterns, synchronization points, instruction level parallelism, thread level parallelism, data dependencies, and I/O characteristics.  Understanding these characteristics of a user application helps the user to understand performance bottlenecks of the application and write more efficient code. We will acquire application signatures for the full range of our application-based benchmarks described in Section II.

In keeping with the memory system performance focus of our work, parameterized, machine-independent memory access pattern models will be a major aspect of our application signatures.  These models will be distinguished from existing memory signature models in that they will be designed to capture data dependence information.  Data dependence information is crucial for determining how good the memory performance is for a given application.  For example, it supports the evaluation of whether access reordering optimizations, such as tiling, will significantly improve performance.

We expect to build on the TSpec framework [WMS00], which characterizes memory accesses as regular expressions. It can also serve as a tool to represent the memory access pattern in a very condensed format, allowing the user to avoid a large volume of trace data.  We will modify the TSpec framework to model data dependencies and expand it to model irregular access patterns, such as those that use an indirection array. These modifications will allow TSpec not only to evaluate the efficacy of cache memory hierarchies, but also to model optimal 
memory system performance for a given algorithm and to provide optimization feedback.

We will implement tools that can derive an application’s memory signature, including data dependence information. The initial prototype will capture these data for regular access patterns and will later be extended to accommodate irregular accesses.  As the technology matures, we will integrate this tool into the ROSE/SvPablo framework.  The eventual goal for this portion of our work is to provide memory-based optimization feedback either to the user, the runtime system, or the compiler.

In addition to local-node computational activity, we will create application signatures for an application’s communication activity.  In particular, we will characterize the frequency, volume, and distribution of both point-to-point and collective communication operations in MPI applications.  Using the MPI profiling layer, we will trace important phases of an application's communication activity, and then, using this trace, we will apply a variety of statistical and classification techniques to this data to determine the signature of the communication activity.

Machine Signatures.  As a complement to application signatures, we will define abstract machine signatures that characterize the fundamental aspects of a machine independent of the applications executing on it.  Examples include latencies and bandwidths within the memory hierarchy, instruction issue rates, and cache and TLB sizes. We will acquire machine signatures for several terascale machines through low-level benchmark probes, as described in Section II.  These signatures will not only support meaningful comparisons among machines, but are also required inputs for performance-predictive convolutions.

It is clearly impractical to collect data for all possible parameter settings of all possible low-level benchmarks.  We must determine what parameters most affect application performance on the various architectures and the sensitivity of performance to those inputs, in order to focus data collection on these essential parameters.  This determination will be made using the technique of sensitivity analysis and statistical backfitting (described below).

Performance-Predictive Convolutions.  By a performance-predictive convolution, we mean a methodology that combines application and machine signatures to produce a performance projection for a specific application-machine combination.  This approach is a key component of our general philosophy for making performance modeling tractable.  The idea is to determine machine attributes independent from the particular application, to characterize the computational needs of applications independent of the particular machine, and then convolve these separate signatures via one or several techniques to arrive at a performance prediction.

Performance bottlenecks can rise from aspects of the machine or the application or both. We will use application and machine signatures to disambiguate the sources of performance bottlenecks. We will explore several different convolution techniques, including performance algebra and statistical methods. We will use these convolutions to predict application performance on a specific machine and to determine when bottlenecks arise from interactions between the application and machine combination. We now discuss the different convolution techniques in detail.

Performance Algebra.  Performance algebra parameterizes analytic models [MeR98].  Performance algebra is useful for playing “what if”.  Machine or algorithm characteristics can be modified and the resulting performance-prediction evaluated.  We will evaluate and develop several algebraic approaches to machine-application signature convolution.  These will extend standard pencil-and-paper performance algebra to account for factors such as I/O, network contention, and workload to capture the complexity of real application performance. The goal will be to develop an expressive notation for evaluating the impact of changes in algorithm or machine parameters.
Black-Box Performance Modeling.  This approach combines generic algebraic performance functions, which are typical for parallel execution in general, and the results of some basic performance measurements. Advanced statistical methods then generate performance models in a semi-automatic fashion.  Using generic models in this way has the potential advantage of greatly reducing the time and labor involved in parallel performance modeling.  The disadvantage of this methodology is that it produces estimates of potentially reduced accuracy and limited range.  The framework of our proposed performance modeling activities provides a test-bed wherein the benefits and shortcomings of this methodology can be evaluated and its range of validity can be established. We will also evaluate extensions to this approach that model memory hierarchies, network contention, and like complications with a goal to approximately predict performance on large machines.

Statistical Methods (Backfitting).  Analytical and statistical methods strive to capture the true shape of the performance prediction function, one by first principles, and the other by back-fitting empirical data.  We will use statistical methods, including MARS (Multivariant Adaptive Regression Splines) to do sensitivity testing on the parameters of our models.  Sensitivity testing will help to establish empirically the extent to which performance depends on various features of architecture and algorithm.  This approach will help determine the right coefficients for terms in a performance model equation.  Progress with these techniques will then be applied to further improve the algebraic techniques described above.

Performance Bound Modeling.  We propose to combine application signatures with machine signatures to establish performance bounds, namely, the upper limit in performance that can be expected for a given application on a given system.  Performance bounds are useful for several reasons.  They provide information about the efficiency of an implementation, where efficiency is defined to be the ratio of achieved performance to the performance bound.  This provides guidance on how best to improve performance.  In the case where efficiency is low, performance-engineering tools such as those described in Section V can be used to improve the implementation.  In the case where efficiency is high but performance is unacceptable, a change of algorithms or architectures can increase the bounds.  For example, in the case of an iterative linear solver limited by memory bandwidth, performance could be improved through the use of a less bandwidth-intensive algorithm, such as a block Krylov method.  Alternatively, the memory in the nodes of a Linux cluster might be upgraded in order to increase the effective bandwidth.

We will continue the development of our initial performance bounding methodology [GKK99]. For example, we will supplement the memory bandwidth bound with a simple cache conflict miss model and, thus, incorporate the effects of instruction cache size, and support the examination of the interplay of data structures and cache line sizes.  In addition, as described in Section III, we will incorporate these models into performance characterization tools based on source code analysis.

The result of these modeling investigations will be the determination of the relative accuracy and capability for large-scale performance modeling techniques, and estimation of the time-cost / accuracy tradeoff of each method.  As all techniques will be applied to the same codes and use comparable performance data, comparisons between techniques will be straightforward. More importantly, we expect progress in one technique to enable further improvement in other techniques, by improving the basic understanding of the factors that determine performance. Advances in performance modeling will advance the state-of-the-science and improve our tools.

V.  Performance Optimizers

Although the collection of performance data and understanding of the key factors limiting performance are key steps in the process of improving performance, they are not sufficient.  First of all, not all application scientists are fully expert in computer technology, and it is somewhat unrealistic to expect each of them to be able to optimize their codes simply based on data gathering and analyzing facilities.  Secondly, even expert programmers often do not have the time to go through their codes and make the necessary modifications – when they complete a project, they are (rightly) pressured by their research supervisors to move on to the next task.  Thus, we see the need for tools to facilitate the process of making code changes for high performance.

However, experience has taught us not to overpromise – it is highly unlikely that a completely automatic and fully effective performance optimization tool will be developed in the foreseeable future.  Thus, we propose to target some prototype tools, to enhance their functionality, and to improve their usability for end users.  The facilities we propose build naturally on the performance monitoring tools of Section III, and, consistent with our focus on memory as the source of performance bounds, focus on optimizing the movement of data through the memory hierarchy.

Simply put, benchmarking, performance analysis, and optimization together form a coherent approach to high-performance performance tuning. In addition to performance evaluation tools and benchmarks, we intend the direct optimization of application codes. Performance evaluation represents a preliminary step to the identification of where application performance might be improved.  Benchmarking represents attempts to characterize application performance so that it can be studied.  Neither directly optimizes application code but are essential steps in identifying how to optimize codes.  We propose the additional crucial step of automating some optimizations through direct manipulation of the application at compile-time and run-time. Since our proposed work will develop tools to deal directly with application codes we provide tools that directly contribute to the optimization of SciDAC applications.

Malleable Software.

Performance Portability Programming. We will investigate the potential benefits and difficulties associated with developing performance portable code, and how the tools and modeling methodology developed in this project can help the application developer achieve this goal.  Our initial approach is to develop alternative implementations for some of the kernels identified in the benchmarking task [WoF94, Wor00].  These new implementations will include tuning parameters that can be used at compile or execution time to improve performance for a given architecture and problem size.  For example, for a message-passing code, the domain decomposition and the process mapping can be varied to affect message counts and volume, network contention, and memory access patterns [FTW96, FoW97].

At a lower level, the communication protocols or use of collective vs. point-to-point operations can be varied, impacting communication overhead [Wor99].  In an OpenMP parallelization, the assignment of loop indices and thread scheduling can be varied.

Empirical studies will be performed to understand the potential of these types of optimizations.  Performance models will be applied to understand the performance sensitivities, and to assess the capability of modeling to predict a priori settings for the tuning parameters [BWM98].  Performance assertions and supporting runtime infrastructure will be applied to identify when performance is not optimal, and how the optimization parameters should be changed to improve performance.  Source-to-source translation tools will be employed to insert common optimization parameters into user code.  Other useful optimization strategies will be encoded in libraries.

This approach complements the AEOS approach to optimization (see below).  The same kernels will be used for both tasks, and useful alternative implementations and optimization parameters can then be considered as candidate optimizations for the automatic optimization strategies.

Performance Assertions.  The overall goal of performance assertions is to create a source code annotation system for applications that allows a user to identify a performance expectation for a given computation or communication operation. At runtime, the assertion will check the performance of the operation, compare it to the expectation, and, if violated, take some action (e.g., alert the user, enable performance monitoring).  This goal consists of three separate tasks: 

· Defining a flexible mechanism for source code annotation that allows a variety of actions mentioned above, 

· Modeling normal and abnormal behaviors for communication and computation operations, and 

· Responding to failed performance assertions with a range of actions from automatic corrective actions to simply counting the failure.

First, we plan to develop a flexible, language-independent syntax that allows users to express a performance expectation for a component of their source code.  With this syntax, the user can meld the performance properties (or application signatures), in a statement that identifies an expectation for well-known languages and library constructs (e.g., loops, BLAS, or MPI).

Second, we plan to identify promising modeling methods that are necessary for determining performance properties of a system and that exploit the additional information acquired from performance assertions.  Clearly, one primary component of performance assertions is the ability to judge when an assertion has failed. Initially, we plan to exploit other activities in this proposal with particular emphasis on low-level benchmarks and machine signatures.  Later, we plan to explore more automated techniques: in one instance, the system generates a performance history for each assertion and then compares the assertion with this statistical history.

Finally, we plan to develop a runtime system for performance assertions that offers a variety of response mechanisms.  Our syntax will allow users to determine the magnitude of response for a violated performance assertion.  Satisfied assertions can be simply discarded.  Unsatisfied assertions can trigger a range of actions.  Example actions include enabling more detailed performance monitoring, alerting the user, and triggering some corrective action, possibly using an adaptation system like Harmony or Autopilot.

In contrast to earlier work by Perl [Per93], this research will focus on automated techniques for judging if an assertion has met its expectation, such as those automated techniques we are currently developing [Vet00]. Also, we plan to provide users with a more general framework for reacting to failed assertions.

Intelligent Adaptation.

Run-time optimizations are proposed using the Harmony and compile-time optimizations are proposed using ROSE.  With New Harmony application specific runtime parameters may be investigated so that specific values may be identified.  With ROSE, preprocessors are built that use source-to-source transformations to optimize application performance at compile-time.  AEOS provides the essential mechanism to define the transformations that would be introduced either in libraries or at compile-time as required.  Not all optimizations must be introduced at compile-time; this proposal recognizes that the optimizations to introduce can be divided into run-time and compile-time optimizations.  Some compile-time optimizations can be introduced via libraries; others must be introduced dependent upon their context within the application. Our proposed work on optimization includes all of these approaches to program optimization.

ROSE. As part of the optimization part of this project we will develop an extensible mechanism for compile-time optimization of applications.  Instead of introducing a special-purpose compiler, we propose the development of sufficient compiler infrastructure to automate the development of specialized preprocessors.  ROSE is a tool for building customized preprocessors. The preprocessors read the application source and reconstruct it before sending it on to the chosen vendor’s compiler; optimizations are introduced via source-to-source transformations. The preprocessors only improve performance without changing the program’s semantics; therefore, this approach is an optional part of the development process.

This mechanism makes the development of the preprocessors and the transformations selected independent of the source language’s compiler.  This simplifies the optimization process and provides for a portable and customizable performance solution.  Such preprocessors could be highly specialized and able to optimize the use of specific library abstractions or more general and utilize explicit or implicit hints provided by the user (comments or pragmas).  This technology will free library designers and application developers to introduce customized high-level compiler optimizations.  This permits the context of abstractions to be seen and their context within the user’s application to trigger the optimizations (via source-to-source transformations).

The essential idea is that many optimizations, particularly cache based optimizations, cannot be introduced readily because program analysis is insufficient or because the compiler is unaware of the semantics of user-defined or library-defined objects, data structures, functions, etc.  Often, the user knows what optimization could be applied, but has no mechanism to communicate that to the compiler; our approach provides relief.  We will initially focus on C and C++ applications (using the EDG C++ front-end and SAGE II); once the technology has been demonstrated, later work will add a Fortran 95 front-end (the SGI Open Source Fortran 95 front-end is a candidate infrastructure).  With the preprocessor approach, we leverage many low-level optimizations provided within modern vendor compilers while focusing on higher-level optimizations largely out of reach because traditional approaches cannot leverage the semantics of high-level user-defined abstractions.  Because we leverage several good quality tools (language specific front-ends), the implementation is greatly simplified and practical.

Our approach is different from other compiler approaches because ROSE provides an automated mechanism for defining high-level grammars specific to user-defined abstractions (for example, objects in an object-oriented framework, functions in a library, or data structures).  We combine this capability with a simple approach to the specification of large and complex transformations.  Also, unlike many other tools, the entire program tree is made available. This permits more sophisticated program analysis when combined with the greater semantic knowledge of user-defined abstractions and thus, more complex transformations.  However, significant research and development are required to make ROSE a robust and useful tool.

New Harmony.  We propose to develop a toolkit to allow applications to automatically adapt their performance based on runtime observations of the machine, operating environment, and dataset used.  Our work will build on our previous work in the Active Harmony system [HoK98, HKR00].  Active Harmony is a software architecture that manages distributed execution of computational objects in dynamic environments.  A key idea of our system is have the application adaptation done by a centralized mechanism.  While the actual means that applications use to reconfigure is certainly application-specific, one of the main contentions is that the decisions about when and how reconfigurations occur should be made in a centralized (or at least hierarchical) resource manager.

Moving policy into a central manager allows both information and application controls to be concentrated into a single location.  Better information often allows better decisions to be made.  Thus, a centralized manager supports adaptation choices that are more likely to ensure better overall resource utilization.  Further, a centralized policy manager allows coordination of the adaptation between a complex application and the libraries on which it is built.

We propose to develop the algorithms and infrastructure to allow resource managers to obtain and exploit detailed information about application resource usage.  Our previous work on Active Harmony concentrated on the infrastructure.  We have built and are testing an expressive interface that allows applications to provide detailed information on resource usage and requirements.  This interface also provides mechanisms to allow a centralized resource manager to allocate (and re-allocate) resources for specific applications.

The work proposed here uses our previous work on resource management mechanisms as a basis to study resource management policies.  To this end we will focus on three areas: 

First, we will develop algorithms and heuristics to extract performance models from harmonized applications.  To allow intelligent selection of tuning options exported by applications, the Harmony system needs to have a performance model to predict the behavior of each option.  In our previous work, users supplied these performance models.  We propose to investigate techniques to automatically construct these performance models by having the system run an application using selected combinations of options and then extract the overall performance model.

Secondly, we will develop and evaluate heuristics to explore the space of possible configurations for a given application as well as a collection of applications.  To allow evaluation, we will adapt and evaluate the performance of a variety of demanding applications in the system, including distributed databases, multimedia servers, and traditional scientific applications. 

Thirdly, we will polish Harmony into a robust system usable by other investigators.  The ultimate measure of the success of Harmony will be if it useful to application developers.

AEOS.  Automated Empirical Optimization of Software (AEOS) addresses the problem of optimizing code on HPC systems directly, by creating software performance optimizations that are both portable (across differing architectures) and persistent (across evolving versions of the same architecture).  AEOS builds on the highly successful proof-of-concept prototype ATLAS software for computational linear algebra software.  Our goal in the research proposed here is to expand the limits on performance portability using the AEOS method, laying the foundation for a new generation of self-adapting high performance libraries and contributing to the development of innovative compiler strategies for scientific computing.  In particular we will:

· Conduct fundamental research that extends and perfects the AEOS method by enlarging the range and power of its automated optimization techniques, including the addition of capabilities for application-specific, run-time, and parallel tunings.
· Encode the positive results of this research in software, both by integrating them into our model AEOS library for Linear Algebra, which is already in wide distribution, and by generalizing them to create an AEOS Toolbox that programmers can use to make software components of all kinds self-adapt for high performance.
· Widely disseminate both our discoveries regarding the AEOS method and the software that encodes them so as to dramatically narrow the gap between the pace of processor development and pace of application speed up for a broad range of scientific software.

The proposed research will push the exploration of the AEOS methodology forward along four complementary lines.  First, it will expand the capabilities of our ATLAS prototype to cover more operations (e.g. packed, banded and Level 1 BLAS) and to permit application specific customizations.  This work will both lay the necessary foundation for the other two phases of the effort and also provide the scientific computing community with the immediate benefits of new AEOS-optimized libraries for these important cases.

Second, it will support an in-depth investigation of the potential of run-time extensions of the AEOS methodology, focusing on the difficult but critically important area of sparse matrix computations.  Third, it will begin to extend the AEOS method from serial to parallel computations, examining the possible benefits to be derived from the optimization of communication libraries.

Finally taking the next logical step, we will explore a range of numerical algorithms for exploitation of the AEOS methodology. Examples include large sparse iterative methods for linear algebra problems, sections of applications that are critical to an applications performance, and, for visualization, the optimization of a frame buffer size to the specifics of the environment.  While we believe that the progressive expansion and generalization of the AEOS method across these four areas of interest will naturally lead to additional optimized libraries for the community, an important, overarching goal of the work is to clarify and formalize the different aspects of the AEOS method so as to facilitate the incorporation of its results into the ongoing work of the compiler and software development communities.

VI. Deliverables

The High-End Computer System Performance ETC will produce a wide range of deliverables, including new performance modeling methodologies, new performance tools, several enhancements and additional platforms for existing tools, new benchmark applications and a publicly available web-based repository of benchmark data for a wide range of platforms. We list deliverables in terms of contract years so that, for example, first year deliverables are due in July 2002, assuming that the contract is awarded in July 2001.

	
	First Year
	Second Year
	Third Year

	Benchmarks
	1. Prototype web-based benchmark repository.

2. Two discipline-specific benchmark suites.

3. Discipline-specific benchmark results for a variety of platforms and input sets.

4. Initial analysis and kernel identification of discipline-specific benchmarks.

5. Low-level benchmark suite for determining machine signatures.

6. Machine signature measurements for several platforms.
	7. Publicly available web-based benchmark repository.

8. Two additional discipline-specific benchmark suites.

9. Benchmark results for new benchmark suites and for original benchmarks on additional systems.

10. Initial analysis and kernel identification of new discipline-specific benchmarks.

11. Additional Machine signature measurements including regression testing and additional machines.
	12. Benchmark results on additional systems.

13. Additional Machine signature measurements including regression testing and additional machines.

	Performance Tools
	14. Port of SvPablo to Compaq Alpha computer systems, and extensions to support integration of performance measurement and models.

15. Port of PAPI for Compaq AlphaServers and HP machines.

16. Sigma for regular codes on a variety of platforms.

17. Data dependent memory tracing tool for regular codes on a variety of platforms.
	18. SvPablo testing and validation with symbolic and statistical performance models, as well as integration with extended PAPI infrastructure.

19. PAPI+.

20. Sigma for regular codes integrated with SvPablo.

21. Prototype of Sigma for irregular codes.

22. Prototype of data dependent memory tracing tool for irregular codes.
	23. Expanded integration and testing of the SvPablo framework with project-developed tools and models, enabling multilingual, multi-platform performance analysis and prediction.

24. PAPI++.

25. SvPablo-integrated Sigma for irregular codes on a variety of platforms.

26. Data dependent memory tracing tool for irregular codes on a variety of platforms.

	Modeling and Analysis
	27. Initial model-fitting methodology for several application models.

28. Initial behavioral classification, time series, and other statistical techniques for creation of compact application signatures.

29. Initial model-fitting methodology for several machine models.

30. Initial model-fitting methodology for several combined application/machine models.

31. Design of data-dependent memory tracing format.

32. Prototype performance bounding tool for C codes.
	33. Evaluations of application models based on discipline-specific benchmark data.

34. Evaluations of machine models based on microbenchmark data.

35. Evaluations of combined application/machine models based on discipline-specific benchmark data.

36. Performance bounding tool for C codes on a variety of platforms.

37. Prototype performance bounding tool for C++ codes.
	38. Refinement and continued evaluation of application models, machine models and combined models.

39. Prototype performance bounding tool for Fortran 95 codes.
40. Intercomparison of modeling methodologies in terms of data requirements, accuracy, and cost.

	Performance Optimizers
	41. Initial ROSE release, including basic support for C and C++ applications, programmable manipulation of the AST, recognition of abstractions and automated simple transformations.

42. New Harmony for a benchmark application that already includes compile-time selectable algorithms.

43. Syntax for performance assertions.
44. Multiple kernel implementations for selected kernels.


	45. ATLAS-style optimization for application codes using sparse structures.

46. ROSE support for complete C++ language (templates) and automated introduction of more sophisticated source-to-source transformations. Compile time dependence analysis and cache locality metric.

47. Integration of ROSE and SvPablo infrastructure for instrumentation and analysis of C++ codes.

48. New Harmony system to extract performance curves and automatically select options based on runtime measurement of different configurations.

49. Evaluation of initial set of (options for) performance assertions.
50. Additional multiple kernel implementations, drawn from both first and second year discipline-specific benchmarks.
	51. ATLAS-style optimization for discipline-specific benchmarks using kernel implementations.

52. Support for SGI Fortran 95 Front-end within ROSE (joint work with ANL and SvPablo). Demonstration of optimizations for C and C++ using discipline-specific benchmarks.

53.  New Harmony+ options for discipline specific benchmarks. (??)

54. Initial prototype automated optimization feedback mechanism based on data dependent memory tracing.


Annual:

In addition to the preceding technical accomplishments, the High-End Computer System Performance ETC will actively engage users of the tools that it produces. The following are annual deliverables throughout the lifetime of the Center that will ensure a wide range of users of our products:

1. High-End Computer System Performance ETC Workshop/class/meeting (stand-alone).

2. High-End Computer System Performance ETC SC Tutorial.

3. High-End Computer System Performance ETC Advisory Committee Review.

VII. Summary

The High-End Computer System Performance ETC will initiate a science of performance that will enable significant advances in performance engineering.  Our science of performance will identify and develop promising performance modeling techniques, most of which will focus on memory hierarchy performance since we believe that the memory hierarchy will dominate application performance for the foreseeable future.  Our models will allow the application programmer to answer the question “Is the performance of my code good enough?”  We will produce an important new set of benchmarks that are based on DOE SC applications and stress memory hierarchy performance.  Also, low-level benchmarks that we develop will capture the key aspects of HPC machines.  Our advancements in performance tools will enable the collection of data for these benchmarks that we need to validate our models, as well as for input to the models.  The data that we gather on these applications will be made available in publicly available repository.  Most important, our performance models will enable the design and implementation of new performance optimizers that advance the state of the art of performance engineering and significantly simplify the task of producing good code.

VIII. Management Plan and Institutional Resources

As mentioned above, this Enabling Technology Center will be a collaboration among eight different institutions – four DOE SC Laboratories (ANL, LBNL, LLNL and ORNL), and four universities (UI, UM, UTK and SDSC). David H. Bailey of LBNL will direct the laboratory activities, while Jack Dongarra of UTK will direct the university activities.  Twice-annual technical meetings will facilitate technical exchanges among the various institutions (which already have begun).  The meetings will be hosted by different institutions and will in some cases be connected with other national meetings to save on travel costs. The collaboration is further organized in three sections with technical leaders (Benchmarking/Infrastructure – Patrick Worley; Modeling /Analysis - Allan Snavely; Tools/Optimizations - Dan Reed). An outside review committee will review progress of the collaboration.

We plan to provide feedback to the HPC community by conducting tutorials on performance analysis and modeling at the annual SCXX meetings, beginning in 2001 if possible.  We also plan to conduct some workshops where users, especially our targeted users (see Section VII), can obtain hands-on instruction on the usage and management of our tools and methods.

As noted in the proposal above, we will rely on access to several high performance computer systems, in order to demonstrate our techniques and tools on multiple platforms.  The following resources are available:

1. The NERSC (LBNL) IBM SP.  This system, which should shortly be in production, features some 140 computational nodes, each of which is a 16-CPU shared memory multiprocessor.  So in other words, the system has a total of 2,240 CPUs.  Each 16-CPU node has 8 Gbyte of memory, for a total of 1.12 Tbyte memory.  There is approximately 20 Tbyte of shared high-speed disk storage.  Major allocations of CPU time on the IBM SP are managed by the DOE SC, but our collaboration has been assured of at least a 10,000 CPU-hour “start-up” allocation for FY01 and at least this amount for subsequent fiscal year.  NERSC also has a PC cluster system, which will be available on a more limited basis as needed for the collaboration.

2. The LLNL Compaq cluster (TCKK).  This system consists of 128 Compaq AlphaServer ES40 nodes, which contain four EV67 processors each.  A Quadrics Elan3 switch connects the nodes.  This LLNL Multiprogrammatic and Institutional computing platform will made available to project members from LLNL and other collaborating institutions.

3. The ORNL IBM SP and Compaq AlphaServer systems. The Center for Computational Sciences (CCS) at the Oak Ridge National Laboratory provides state-of-the-art resources for high-performance computational science and computing science research. The primary computational resources currently include a 184-node, 724-processor IBM RS/6000 SP and a 64-node, 256-processor Compaq AlphaServer SC, each with over two terabytes (TB) of system-wide disk storage. 10% of the time on these systems has been reserved for performance evaluation studies, which will be made available to researchers in this collaboration. Many of the focus areas, including climate, computational chemistry, and astrophysics, also have significant allocations of time on these systems. Planning is underway to upgrade the AlphaServer SC to 128 nodes in the spring of 2001, which would bring the aggregate peak> computational power of the CCS to 2 teraflops (TF).

4. The University of Tennessee features several research cluster systems, including a 4-quad 500 MHz Pentium III cluster, a 16 dual-450MHz UltraSparc-II system, a 17 dual-500MHz Pentium III system, and a 32 dual-500MHz Pentium III system.  The first three have a Gigabit Ethernet network, while the last features a Myrinet network.

5. The ANL cluster systems.  Argonne MCS facilities include three systems: (1) a Linux cluster with 512 CPUs for computation and 32 CPUs for visualization, 153 Gbyte memory, 8.4 Tbyte disk and a Myrinet interconnect; (2) a 128-CPU SGI Origin 2000, with 32 Gbyte memory and 2 Tbyte disk; and (3) an 80-node IBM SP with 256 Mbyte memory and 9 Gbyte disk.
6. The SDSC Blue Horizon is a 1,152 processor IBM RS/6000 SP and currently the most powerful computer available to the U.S. academic community. The PSC system (under construction) will be a network of 682 four processor Compaq AlphaServers. 

IX. Other Support of Investigators

The principal investigators are currently supported as follows:

1. David Bailey is supported by NERSC Program funds (75%) and LBNL LDRD funds (25%) for the project "High Precision Arithmetic with Applications in Mathematics and Physics".  If this proposal is approved, he will be supported 25% by this project.

2. Erich Strohmaier is currently supported 100% by short-term DOE SC funding.  If this proposal is approved, he will be supported 50% by this project and 50% by the pending DOE FWP proposal “Benchmarking for HPC Systems and Applications”.

3. Dan Quinlan is currently supported 20% by a DOE MICS project (“ACTS Toolkit”) and 80% by a Defense Programs project (“ASCI PSE”). If this proposal is approved, he will be supported 25% and 25% by the pending DOE MICS project “Terascale Simulation Tools and Technologies (TSTT) Center ETC”.

4. Bronis de Supinski is currently supported 50% by a LLNL LDRD project (“Overcoming the Memory Wall in SMP-Based Systems”) and 50% by a Defense Programs project (“ASCI PSE”). If this proposal is approved, he will be supported 25% by this project, 8% by a pending DOE SBIR proposal (“MemWall SRC”) and 50% by his current LLNL LDRD project.

5. Jeffrey Vetter is currently supported by DOE NNSA funding through ASCI Problem Solving Environments (PSE). If this proposal is approved, he will be supported 50% by this project.

6. Patrick Worley is currently supported by a DOE-OBER ACPI project (50%) ("Improvements to Parallel Algorithms for Climate Models") and by a DOE MICS project ("Evaluation of Early Systems").  If both proposals are approved, he will be supported 50% by this project, and 50% by the SciDAC project "Collaborative Design and Development of the Community Climate System Model for Tera-Scale Computers”.

7. Thomas Dunigan is currently supported 40% by the University of Tennessee, 35% by a DOE-MICS project ("Evaluation of Early Systems" and "Probe"), 15% by an ORNL LDRD fund and 10% by ORNL computer security.  If both proposals are approved, he will be supported 50% by this project and 40% time by the SciDAC proposal "Net100: Building a Network Toolkit to Support High Performance Distributed Applications”.

8. Paul Hovland is currently supported 100% by a DOE project (“Applied Mathematics Program” dealing with automatic differentiation tools and technology). If this proposal is approved, he will be supported 25% by this project.
9. Boyana Norris is currently supported 30% by a DOE project (“Applied Mathematics Program” dealing with automatic differentiation tools and technology) and 70% by a DOE project (“DOE2000 - ACTS Toolkit Global Optimization”). If this proposal is approved, she will be supported 25% by this project. She has another SciDAC proposal pending (50%)  (“SciDAC-Center for Component Technology for Terascale Simulation Software”) 
10. Jack Dongarra is supported by a variety of DOE and NSF grants, contracts, and cooperative agreements. See the section about “Items pertaining individual institutions” at the end of the proposal package for details.

11.  Dan Reed is supported by a variety of DOE and NSF grants, contracts, and cooperative agreements. See the section about “Items pertaining individual institutions” at the end of the proposal package for details.

12. Jeff Hollingsworth is currently supported 75% of the time by the University of Maryland, 20% of the time by a DOE grant set to expire in 2002, and 5% by an NSF grant that expires in late 2001.  If this proposal is funded, it will fund about at 17%. He has another proposal pending, and if this were funded, his effort on this project would be 12.5%.

13. Allan Snavely is supported 50% by UCSD general funds and 50% by DOD PET funds.  If this proposal is funded it will support him at 50%.

X. Relationships with Users

In order to ensure the relevance of this research and the usability of the resulting tools, we will work closely with application scientists.  We expect that such partnerships will promote the widespread usage that is necessary for these facilities to gain acceptance in the community.  To that end, the following applications researchers have agreed to try our tools, and provide substantive feedback:

Scientist

Institution


Field

David Bernholdt
ORNL



Quantum chemistry

Phillip Colella

LBNL



Combustion, adaptive techniques for PDES

John Drake

ORNL



Climate modeling

James Glimm     
BNL   



Simulation, Mesh Generation 

Robert Harrison
PNNL



Quantum chemistry
Robert C. Malone
LANL



Ocean modeling

Anthony Mezzacappa
ORNL



Astrophysics

Andrew McCammon
Hughes Medical Institute
Molecular modeling, biomedical application

Ji Qiang

LANL



Accelerator physics

William Shelton
ORNL



Materials science

Peter Taylor

SDSC (Chief Scientist)
Quantum chemistry

Theresa Windus
PNL



Quantum chemistry

Most of these scientists are involved in key DOE SC applications.  Several, including Colella, McCammon and Taylor, are senior scientists representing teams of researchers. Bernholdt, Colella, Drake, Harrison, Malone, Mezzacappa, and Windus, are involved in other SciDAC proposals and have emphasized the importance of this performance modeling activity in their proposed research project. Selected letters of support are enclosed.

This project will be proactive in communicating with the application groups: attending their meetings to make presentations, hosting individuals or groups at our sites to demonstrate tools, communicating directly with the developers when optimizations important to their codes are identified.  Specifically, we will host an annual user workshop, present tutorials at the annual SCXX meetings and appoint an advisory/review committee that will include at least one member of an application team selected for SciDAC funding.
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David H. Bailey

Current Position:  Chief Technologist, NERSC Division, LBNL
Academic Background:

B.S. 1972, mathematics, Brigham Young University

Ph.D. 1976, mathematics, Stanford University

Major Awards

1. The 1993 Sidney Fernbach Award.  This award is presented by the IEEE Computer Society at the annual Supercomputing conferences for outstanding contributions to the field of high performance computing.  The citation mentioned work in FFTs, matrix multiplication, multiple precision arithmetic, and the NAS Parallel Benchmarks.

2. The 1995 H. Julian Allen Award.  This award is presented annually by NASA Ames Research Center for outstanding research work and papers.  The article cited for this award was “The NAS Parallel Benchmarks”, co-authored with several other NASA scientists.

Research Work

I have published numerous studies in high-end scientific computer performance, including memory system performance, computational performance and system-level performance.  One of these studies, the NAS Parallel Benchmarks, is widely utilized in the high performance computing community to compare and to analyze computational performance.  More recently, myself and several other researchers at LBNL recently developed the Effective System Performance (ESP) test, which measures job scheduling efficiency, system shutdown-reboot times and handling of large jobs.
Selected Publications

1. David H. Bailey, “Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers”, Supercomputing Review, Aug. 1991, pg. 54-55.  This article has been cited many times, including The New York Times, Sep. 22, 1991, pg. 14.

2. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan and S. K. Weeratunga, “The NAS Parallel Benchmarks”, International Journal of Supercomputer Applications, vol. 5, no. 3 (Fall 1991), pg.  63-73.

3. David H. Bailey, “Misleading Performance Reporting in the Supercomputing Field”, Scientific Programming, vol. 1, no. 2 (Winter 1992), pg. 141-151.

4. David H. Bailey, Eric Barszcz, Leo Dagum and Horst D. Simon, “NAS Parallel Benchmark Results”, IEEE Parallel and Distributed Technology, premier issue, Feb. 1993, pg. 43-51.  Several updates have been published elsewhere.

5. David H. Bailey, “RISC Microprocessors and Scientific Computing”, Proceedings of Supercomputing 1993, IEEE Computer Society, Nov. 1993, pg. 645-654.

6. ParkBench Committee [which included DHB], “Public International Benchmarks for Parallel Computers”, Scientific Programming, vol. 3, no. 2 (Summer 1994), pg. 100-146.

7. David H. Bailey, “Unfavorable Strides in Cache Memory Systems”, Scientific Programming, vol. 4 (1995), pg. 53-58.

8. Adrian T. Wong, Leonid Oliker, William T. C. Kramer, Teresa L. Kaltz and David H. Bailey,  “ESP: A System Utilization Benchmark”, Proceedings of SC2000, Nov. 2000.

Erich Strohmaier

Main Research Interests

· Performance evaluation, modeling and prediction techniques for HPC systems. 

· Evaluation of computer architectures and software.  

· Optimization of end-user application performance on HPC systems.

Professional Experience

Dr. Erich Strohmaier is Computer Scientist at NERSC, Lawrence Berkeley National Laboratory where he is primarily conducting research in the areas of  benchmarking, performance modeling, and performance engineering for HPC systems and applications. His current research focus is the generation of  system independent long-term reference benchmarks for the HPC community. He is also founding member and technical lead of the TOP500 project for tracking, evaluation, and projection of trend in the HPC computer industry. 

Prior to joining NERSC Erich Strohmaier held positions as Adjunct Assistant Professor and Post-Doctoral Research Associate at the Innovative Computer Laboratory (ICL) in the Department of Computer Science, University of Tennessee at Knoxville (1995-2000). There he provided scientific guidance to ICL researchers and students on multiple performance evaluation, modeling and optimization projects. He was involved in the design of several HPC benchmarks and conducted research on advanced statistical performance analysis as well as on performance modeling for sequential and parallel systems. 

Before Joining ICL Erich Strohmaier held positions as Group Leader and as Post-Doctoral Research Associate in the Parallel Computing Group at the Computing Center of the University of Mannheim in Germany (1990-1995). He was overseeing the procurement and operation of the University’s parallel computer systems and conducted research in benchmarking vector- and parallel systems. From 1987-1990 he was Research Associate at the Institute for Theoretical Physics, University of Heidelberg, Germany.

Erich Strohmaier holds a Diploma of Physics (1987) and a Dr. rer. nat. (1990) in Theoretical Physics from the University of Heidelberg, Germany.

Selected Publications

Erich Strohmaier, Jack J. Dongarra, Hans-Werner Meuer, and Simon. Horst D. The Marketplace of HPC. Parallel Computing, 25th anniversary edition, North Holland, 25():1517-1544, 1999.

Erich Strohmaier. Statistical Performance Modeling: Case Study of the NPB 2.1 Results. In Christian Lengauer, Martin Griebl, and Sergei Gorlatsch, editors, Euro-Par'97 Parallel Processing, volume 1300 of LNCS, pages 985{992. Springer, August 1997.

Horst D. Simon and Erich Strohmaier. Statistical Analysis of NAS Parallel Benchmarks and LINPACK Results. In Bob Hertzberger and Guiseppe Serazzi, editors, High-Performance Computing and Networking, pages 626{633, May 1995.

Daniel Quinlan 

Research Interests

· Adaptive mesh refinement 

· Overture Framework Project to simplify the development of scientific numerical applications

· Numerical analysis

· Parallel computing

· Performance  analysis

Education

Ph.D.

Applied Mathematics, University of Colorado at Denver, 1993

B.A.

Applied Mathematics, summa cum laude, University of Colorado at Denver, 1987 

Professional Experience

9/98–present
Computer Scientist, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA

8/94–8/98
Acting Team Leader (12/97–6/98) and Staff Scientist, Los Alamos National Laboratory (LANL), Los Alamos, NM

1/94–8/94
Department of Energy Postdoctoral Fellow, LANL

Selected Publications

Bassetti, Federico, Kei Davis, Madhav Marathe, and Dan Quinlan, “Improving Cache Utilization of Linear Relaxation Methods: Theory and Practice,” submitted to multiple journals. 

Brown, David L., William Henshaw, and Daniel Quinlan, “Overture: Object-Oriented Tools for Application with Complex Geometry,” Int’l Sym. on Object-Oriented Parallel Environments, San Francisco, CA, December 7–10, 1999. 

Davis, K., B. Philip, and D. Quinlan, “ROSE: The Design of a General Tool for the Independent Optimization of Object-Oriented Frameworks,” #rd Int’l Symp. on Computing in Object-Oriented Parallel Environments (ISCOPE'99), San Francisco, CA, December 7–10 1999.

Brown, D., G. Chesshire, W. Henshaw, and D. Quinlan, “OVERTURE: An Object-Oriented Software System for Solving Partial Differential Equations in Serial and Parallel Environments,” Proc. SIAM Parallel Conference, Minneapolis, MN, March 1997.

Parsons, R., and D. Quinlan, “Run-time Recognition of Task Parallelism within the P++ Parallel Array Class Library,” Proc. Conf. on Parallel Scalable Libraries, Mississippi State, 1993.

Lemke, M., and D. Quinlan, “Fast Adaptive Composite Grid Methods on Distributed Parallel Architectures,” Proc. 5th  Copper Mountain Conf.  on Multigrid Methods, Copper Mountain, CO, April 1991. Also published in Communications in Applied Numerical Methods, 8 (9/1992), pg. 609–619.

McCormick, S., and D. Quinlan, “Asynchronous Multilevel Adaptive Methods for Solving Partial Differential Equations on Multiprocessors: Performance Results,” Parallel Computing, 12 (1989), pp. 145–156.

Bronis R. de Supinski

Research Interests

	· Parallel performance evaluation
	· Distributed object computing

	· Cache coherence and distrib. shared memory
	· Parallel and distributed simulation

	· Computer architecture and memory systems
	· Speculative execution

	· Networks of workstations
	· Parallel algorithms


Education

Ph.D.

Computer Science, University of Virginia, May 1998

M.S.

Computer Science, University of Virginia, January 1995

B.A.

Mathematics, University of Chicago, June 1987

Professional Experience

8/98–present
Computer Scientist, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory (LLNL), Livermore CA 

2/91–8/92
Computer Coordinator, Dept. of Cell Biology and Anatomy, Mt. Sinai Medical Center, New York

3/90–11/90
Systems Coordinator, Medical Center Development, University of Chicago

11/88–3/90
Assistant Director for Systems, Medical Alumni Association, University of Chicago

Selected Publications and Presentations

Williams, Craig, Paul F. Reynolds, Jr., and Bronis R. de Supinski, "Delta Coherence Protocols," IEEE Concurrency, in press. 

Vetter, Jeffrey S. and Bronis R. de Supinski, "Dynamic Software Testing of MPI Applications with Umpire," SC2000 (Supercomputing conference), November 4–10, 2000, Dallas, TX. 

de Supinski, Bronis R. and Bor Chan, "Towards an Integrated Parallel Microbenchmark Suite," submitted Workshop on OpenMP Applications and Tools 2000 (WOMPAT 2000), July 6–7, 2000, San Diego, CA. 

Karonis, Nicholas T., et. al., "Exploiting Hierarchy in Parallel Computer Networks to Optimize Collective Operation Performance," Fourteenth International Parallel and Distributed Processing Symposium, May 1–5, 2000, Cancun, Mexico. 

de Supinski, Bronis R. "Performance of Multi-Level Collective Communications," ASCI presentation at SC99 (Supercomputing conference), November 16–17, 1999, Portland, OR. 

de Supinski, Bronis R. and Nicholas T. Karonis, "Accurately Measuring MPI Broadcasts in a Computational Grid," Eighth EEE International Symposium on High Performance Distributed Computing (HPDC'99), August 3–6, 1999, Redondo Beach, CA. 

de Supinski, Bronis R. and John May, "Benchmarking Pthreads Performance," 1999 International Conference on Parallel and Distributed  Processing Techniques and Applications (PDPTA'99), June 28–July 1, 1999, Las Vegas, NV. 

de Supinski, Bronis R. and John May, "Benchmarking Pthreads," an invited presentation to the First Annual IBM SP Advanced Computing Technology Center (ACTC) Scientific Applications Development and Optimization Meeting, March 17–19, 1999, San Diego Supercomputing Center, San Diego, CA. 

Jeffrey S. Vetter

Research Interests

· High-performance computing with emphasis on bringing advanced computational capabilities to bear on science and engineering problems 

· Scalable performance analysis techniques

· Advanced software development environments

Education

Ph.D. 
Computer Science, Georgia Institute of Technology, 1998

M.S. 
Computer Science, Georgia Institute of Technology, 1994

B.S. 
Computer/Electrical Engineering with honors, Georgia Institute of Technology, 1989

Professional Experience

6/99–present
Computer Scientist, LLNL, Livermore, CA 

1/98–6/99
Postdoctoral Research Fellow, University of Illinois, Urbana–Champaign


5/96–12/96
Research Intern, Los Alamos National Laboratory, Los Alamos, New Mexico

8/91–11/93
Computer Science Intern, Intel Corporation 

Selected Publications  
J.S. Vetter (2000). Performance Analysis of Distributed Applications using Automatic Classification of Communication Inefficiencies. Proc. ACM Int'l Conf. Supercomputing (ICS), ACM Press.

J.S. Vetter and B.R. de Supinski (2000). Dynamic Software Testing of MPI Applications with Umpire. Proc. SC2000: High Performance Networking and Computing Conf. (electronic publication), ACM/IEEE.

L. Derose, M. Pantano, J.S. Vetter and D.A. Reed (2000). Performance Issues in Parallel Processing Systems. Performance Evaluation - Origins and Directions. G. Haring, C. Lindemann and M. Reiser, Springer-Verlag.

J.S. Vetter and D.A. Reed (2000). “Real-time Performance Monitoring, Adaptive Control and Interactive Steering of Computational Grids.” International Journal of High Performance Computing Applications 14(4): 357-366.

Eisenhauer, G., W. Gu, T. Kindler, K. Schwan, D. Silva and J.S. Vetter, “Opportunities and Tools for Highly Interactive Distributed and Parallel Computing,” Debugging and Performance Tuning for Parallel Computing Systems. M. Simmons, A. Hayes, J. Brown and D. Reed, Eds., IEEE Computer Society Press (1996), pp. 245–277.

Vetter, J.S., and D. Reed, ”Real-time Performance Monitoring, Adaptive Control and Interactive Steering of Computational Grids,” to appear in The International Journal of High Performance Computing Applications. 

Vetter, J.S., and K. Schwan, “Techniques for High Performance Computational Steering,” IEEE Concurrency 7(4):63--74.

Gu, W., G. Eisenhauer, K. Schwan and J.S. Vetter, “Falcon: On-line Monitoring and Steering of Parallel Programs,”  Concurrency: Practice and Experience 10 (9/1998), pp. 699–736. 
Vetter, J.S., and D. Reed, “Managing Performance Analysis with Dynamic Statistical Projection Pursuit,” Proc. SC99 (electronic publication).

Patrick H. Worley

Research Staff, Computer Science and Mathematics Division, ORNL

http://www.csm.ornl.gov/~worley

Education

Ph.D. and M.S., Computer Science, Stanford University

B.S., Computer Science and Mathematics, Indiana University

Expertise

Dr. Worley’s educational background and work experience are in numerical analysis and parallel computing, with an emphasis on the solution of partial differential equations. His current research interests include parallel algorithm design and implementation, and performance evaluation of parallel applications and computer systems. Dr. Worley’s parallel algorithm work ranges from theoretical investigations into what is feasible based on information theoretic concepts to the design and implementation of parallel algorithms in atmospheric and ocean simulation models. He has expertise on Compaq AlphaServer SC, Convex Exemplar, Cray Research T3x, IBM SP, Intel, nCUBE, and SGI Origin parallel systems. He is a coauthor of CCM/MP-2D, a massively parallel implementation of the Community Climate Model CCM3, and is continuing to work on the design and development of the next generation NSF/DOE coupled climate model. Dr. Worley’s work on performance evaluation has three aspects: (1) performance data collection, visualization, and analysis, (2) benchmarking and benchmarking methodology, and (3) performance portability. He is the author of an instrumentation library for MPI and for the Portable Instrumented Communication Library (PICL). He is the primary author of the tunable benchmark code PSTSWM, and has an active interest in techniques for "fair" benchmarking and in programming styles and tools that support performance portability. Other recent research includes constructing and evaluating models for the performance prediction of parallel programs. Dr. Worley is currently leading an application-oriented evaluation of the Compaq AlphaSever SC. 

Recent Publications on Performance Evaluation

"Performance Evaluation of the IBM SP and the Compaq AlphaServer SC", in Proceedings of the ACM International Conference of Supercomputing 2000.

"Performance Tuning and Evaluation of a Parallel Community Climate Model," with J.B. Drake, S. Hammond, and R. James, in Proceedings of the ACM/IEEE Conference on High Performance Networking and Computing (SC99). 

"A Study of Application Sensitivity to Variation in Message Passing Latency and Bandwidth," with A.C. Robinson, D.R. Mackay, and E.J. Barragy, Concurrency: Practice and Experience, Vol. 10(5), pp. 387-406.

"Performance Modeling for SPMD Message-Passing Programs," with J. Brehm and M. Madhukar, Concurrency: Practice and Experience, Vol. 10(5), pp. 333-357. 

"Performance of parallel computers for spectral atmospheric models," with I. T. Foster and B. Toonen, Journal of Atmospheric and Oceanic Technology, Vol. 13(5), pp. 1031-1045.

Recent Performance Evaluation Results

http://www.csm.ornl.gov/~worley/evaluation

http://www.csm.ornl.gov/~worley/studies/studies.html

Thomas H. Dunigan

Senior Research Staff, Computer Science and Mathematics Division, ORNL

Associate Professor, Computer Science Department, University of Tennessee, Knoxville

Education

B.S., Physics and Mathematics, Duke University 

M.S. and Ph.D., Computer Science, University of North Carolina

Experience

1976-present, Oak Ridge National Laboratory

1999-present, Computer Science Department, University of Tennessee

Expertise

Dr. Dunigan has active research interests in the performance characterization and analysis of parallel computers and their communication subsystems. For the last 13 years, he has led efforts at ORNL for evaluating early releases of parallel computing systems, including the Compaq AlphaServer SC, Intel iPSC/1, iPSC/2, iPSC/860, and Paragon, and the SRC 6, Kendall Square,  and Chen shared-memory multiprocessors. 

Relevant Publications 

Message-passing Performance of Various Computers, ORNL/TM-13006, with Dongarra, 1996, Concurrency: Practice & Experience, v9(10), October 1997. 

Performance of ATM/OC-12 on the Intel Paragon,  ORNL/TM-13239, 1996. 

Beta Testing the Intel Paragon MP,  ORNL/TM-12830, 1995. 

Early experiences and performance of the Intel Paragon,  ORNL/TM-12194, 1994. 

Multi-ring performance of the KSR,  ORNL/TM-12331, 1994. 

KSR: Early experiences and performance,  ORNL/TM-12065, 1992. 

Communication performance of the Intel Delta,  ORNL/TM-11983, 1992. 

Performance of the Intel iPSC/860 and Ncube 6400 hypercubes,  Parallel Computing, 17(1991).

Paul Hovland

Research Interests

Computational differentiation tools for production of accurate and efficient derivative codes; component-based software engineering for high performance scientific computing

Education

1997
Ph.D.

Computer Science, University of Illinois, Urbana-Champaign

1993
M.S.

Computer Science, Michigan State University

1991
B.S.

Computer Engineering, Michigan State University

Experience

· Assistant Computer Scientist, Mathematics and Computer Science Division, Argonne National Laboratory, 1998-present

· Enrico Fermi Fellow, Mathematics and Computer Science Division, Argonne National Laboratory, 1997-1998

Publications

P. D. Hovland and L. C. McInnes, "Parallel Simulation of Compressible Flow Using Automatic Differentiation and PETSc," Parallel Computing, special issue on Parallel Computing in Aerospace (to appear).

P. Hovland and M. Heath, "Adaptive SOR: A Case Study in Automatic Differentiation of Algorithm Parameters," SIAM J. Scientific Computing, to appear.

L. A. Freitag, W. D. Gropp, P. D. Hovland, L. C. McInnes, and B. F. Smith, “Infrastructure and Interfaces for Large-Scale Numerical Software,” Proceedings of the 1999 International Conference on Parallel and Distributed Processing Techniques and Applications.

P. Hovland, B. Norris, L. Roh, and B. Smith, "Developing a Derivative-Enhanced Object-Oriented Toolkit for Scientific Computations," Proceedings of the SIAM Workshop on Object Oriented Methods for Interoperable Scientific and Engineering Computing, M. Henderson et al., eds., 1998, pp. 129-137.

P. Hovland, B. Mohammadi, and C. Bischof, "Automatic Differentiation of Navier-Stokes Computations," Computational Methods for Optimal Design and Control, J. Borggaard et al., eds., Birkhauser, Boston, 1998.

Boyana R. Norris

Education

B.S., Computer Science, Wake Forest University, 1995 

Ph.D., Computer Science, University of Illinois at Urbana-Champaign, 2000

Experience

1996-1999
Graduate Research Assistant, University of Illinois at Urbana- Champaign

1999-present
Postdoctoral Research Staff, Mathematics and Computer Science 

Division, Argonne National Laboratory, Argonne, IL

Expertise

Dr. Norris has active research interests in source transformation tools, parallel computing, interactive environments for parallel computing, and generic programming.  Her research involves the development of modular source transformation tools for generating code for derivative computations. Her thesis explores issues involved in effective performance prediction and resource management in an interactive high-performance computing environment.

Selected Publications 

B. Norris and P. D. Hovland, "A Distributed Application Server for Automatic Differentiation," Preprint ANL/MCS-P856-1100, Nov. 2000.

J. Abate, S. Benson, L. Grignon, P. Hovland, L. McInnes, B. Norris, "Integrating Automatic Differentiation with Object-Oriented Toolkits for High-Performance Scientific Computing," Preprint ANL/MCS-P820-0500, May 2000. 

B. Norris, "An Environment for Interactive Parallel Numerical Computing", Ph.D. Thesis, University of Illinois at Urbana-Champaign, November 1999. 
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He is the author of research papers and monographs on algorithms, architectures, and performance evaluation techniques for high-performance computing and virtual environments.  He has been a principal in the multi-agency (NSF, DARPA, DOE, and NASA) national Scalable I/O Initiative (SIO) and a member of a collaborative, NSF-funded Grand Challenge group with Caltech to explore the input/output performance of scientific codes using the Pablo instrumentation software. This work led to the forthcoming book Scalable Input/Output: Achieving System Balance, to be published by MIT Press. 
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